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ABSTRACT

The paper presents an analytical solution for a transient two-dimensional radia flow of a com-
pressible fluid into a line well. The problem is formulated in a context of poro-elasticity and the
solution fully accounts for effects of stress redistribution around the well as well as the back
effects of stress changes on fluid flow. Poro-elastic, fluid-saturated reservoir is considered to be
plane and surrounded by an impermeable elastic material of an infinite extent. The governing
equation for fluid pressure is derived by considering a general axi-symmetric solution of the the-
ory of elasticity and using compatibility of displacement and stresses at the interface between the
reservoir and the surrounding material. The resulting second order integro-differential equation is
solved using Hankel transform. In limiting cases of infinitely stiff and infinitely soft host material
the governing equation reduces to the standard diffusion equation. Implications of the solution for

well testing and reservoir simulation in petroleum engineering are discussed.
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Introduction

The production of oil or water from underground reservoirs or injection of displacing fluids
resultsin local changes of the stressfield as a consequence of pressure changes in permeable for-
mations surrounding wells. The resulting reservoir deformations tend to alter porosity of the res-

ervoir rock and can have a pronounced effect on conditions of fluid flow.

The theory of poro-elasticity pioneered by Biot (1941) can be used to describe a coupled process
of fluid flow and associated stress changes in the host material. Most practical applications, how-
ever, such as well testing in petroleum engineering or reservoir simulation, are based on solutions
of uncoupled flow equations obtained by neglecting total stress changesin the reservoir. For some
problems, such as the assessment ground surface subsidence, the problem of the theory of elastic-
ity is solved separately based on prescribed pressure changes, e.g. Geertsma (1973). Entov and
Malachova (1974) give a detailed uncoupled solution for stress changes around a well assuming
pressure to follow the solution of the standard transient well equation. They also express an opin-
ion that the back effect of stress change on fluid flow isin most cases very small. On the other
hand, a numerical assessment of the effect of global stress changes on oil production from Ekofisk

reservoir suggests that such effects are far from negligeable, Sulak et. a., 1991.

The objective of the present paper is to pose and solve a fully coupled poro-elastic problem of
transient compressible flow into a line well. A single phase fluid flow in the poro-elastic
unbounded plane reservoir is assumed to be radial and two-dimensional. The host rock surround-
ing the reservoir is treated as impermeable and linearly elastic. Deformations of the reservoir are
assumed to be vertical and the influence of the ground surface is neglected. In practical terms, the
solution is applicable for flow times such that the radius of a zone affected by pressure changesis

small compared to the reservoir depth.

In the conventional treatment of this problem it is commonly assumed that overburden has no
stiffness and the vertical stress at the reservoir plane is unaffected by pressure changesin the res-
ervoair. In this case reservoir compaction is completely determined by local pressure changes and
the governing equation for transient flow is the well-known parabolic diffusion equation. When
the stiffness of the host material is taken into account, local pressure changes create only a poten-

tial for compaction. Vertical contraction of the reservoir would tend to induce tensile deforma-
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tions in the host material creating a reaction that would resist compaction. In the limiting case
when the host material isinfinitely stiff, reservoir deformations will not take place at all, no mat-
ter what pressure change is induced in the reservoir. This case is also described by the conven-
tional well equation assuming that the reservoir material isincompressible. In al other cases, asit
will be shown below, the degree of the reservoir compaction is strongly influenced by the relative

stiffness of the overburden with respect to the reservoir stiffness.

The interaction of reservoir and overburden is such that pressure change in one location leads to
deformations and stress changes al over thereservoir. This, initsturn, affects pressure changes at
all reservoir locations. This non-local nature of the reservoir-overburden interaction leads to an
integro-differential governing equation for transient flow. This equation is derived and solved
below.

Mass Balance in Reservoir

Compressibility of the reservoir affects only the storage term in the transient flow equation. If g is
the mass flux of all flowing components, their accumulation (in terms of mass) in a unit volume
per unit time is —divg, where q is the flow vector. This extra mass has to be accommodated
within the pore volume, either by fluid compression/expansion or by changesin the volume of the
pore space. If dv, isaninfinitessmal bulk volume through which flow occurs, and de = fdy,is

the pore volume (f - porosity), the continuity of flow can be expressed as follows:

—divg = 2 Tgravy = 104 L e (1)

d_\lfbﬂt Tt dv, Tt
where r isthe average density of fluids. Its rate of change depends on changes in partia pres-
sures of different components. The second term above accounts for pressure and overburden
stress-related changes in pore space. It should be noted that it would be incorrect to write the last
term of (1) asr f «{t introducing dv,, under the sign of the time derivative. Thisis because dv,,

changes with time as aresult of stress changes caused flow.
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Reservoir Material Model

In the subsequent formulation the reservoir material will be treated as poro-elastic. This implies
that variation in pore pressure and external confinement results in changes of both pore and bulk
volumes. Assuming that the pore volume Vo and the bulk volume v, are functions of pore pres-
sure p and hydrostatic stress s , i.e. vp(p, s) and v,(p,s) , theincremental volumetric response

of infinitezinal volumes dv;, and dv,, can be expressed as follows:

_ ﬂde ﬂde _ 2

o fdvy  Tdv,
dv, = ﬂ_pp + ﬂ_ss = dvbepp—dvbeSS 3
where compressibilities C,,, Cs, Cp,p,, Cpps are positive and defined through partial derivatives

of respective volumes. Note that stress s is considered positive when compressive.

Physical arguments put forward by Zimmerman et. a., 1986, suggest that only two out of four
compressibilities are independent. In the subsequent text the reservoir material will be described
in terms of bulk compressibility C, = C,, and compressibility of solid matrix, C,,,. Other com-

pressibilities are expressed interms of C,, C . asfollows, (Zimmerman et. al., 1986)

Cpp = C—Ci (4)
Cps = (C,—C)/f (5)
Cpp = [C,—(1+F)C i (6)

In order to reduce the number of dimensional constants it is convenient to use ratio of compress-

ibilittesa = C,,xC,. Thisratio is small and will be shown to have adistinct physical meaning.

Considering that changes in pore volume are mainly determined by changes in bulk volume, it is
essential to establish alink between the two quantities. Thisis done by eliminating s from (2-3)

to obtain the following expression for changes in pore volume per unit bulk volume:

Wy _ (1 a)dvb+(1 a—f)C (7)
dv,  © av, mP
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It will be further assumed that deformations of the reservoir are uniaxial. This assumption is suffi-
ciently accurate if the thickness of the reservoir is small compared to the depth below ground sur-

face. In that case dv,, adv,, issimply vertical strain rate in the reservoir.

In the subsequent work, flow in the reservoir of thickness h will be considered 2-dimensional and
flow equations averaged along the reservoir thickness. If (7) isused in the left side of (1), the flow
eguation can be rewritten as follows:

—divg = rf[Cf+%“(l—a—f)ﬂ1_$+r(1—a)%1111_? 8

where Cir = r «fp is the fluid compressibility (written here for a single phase). For multi-
phase situation partial pressures should be used or C; should be interpreted as a compressibility

of the flowing mixture.

The last term in (8) isrelated to vertical strain rate in the reservoir. This quantity must be related
to changes in vertical stress. Thislink can be established using the condition of no lateral strainin
the reservoir and using isotropic elastic stress-strain law based on (3) but with shear deformations
superimposed:

8 = g (S =80;) + 5(CpsS ~CopP)dly (5 = 5453) )

where Gisthe shear modulus. The above relationship can be rewritten in the familiar form of gen-

eralized Hook’ s law if effectivestress s¢= s —(1—a)pdij isintroduced.

During laterally constrained vertical deformations of the reservoir horizontal effective stress
change becomes s¢ = n a1-n,)s¢ . Vertica strain rate &, can be calculated from (9) in

terms of the vertical stress change as follows.

1

_1-1+n _ _1%h
eV - écrlan[Sv_(l_a)p] - Tr

LLA 1

ht (10)
where n, is the Poisson’s ratio and the left side above is the relative rate of reservoir thickness
change. The last relationship will be used to relate pore pressure change in reservoir with total

stress changes in overburden.



An Analytical Solution for a Coupled Well Flow - Overburden Deformation Problem

Reservoir-Overburden Interaction

Flow-related variation in pore pressure changes effective stress and results in deformations of
both reservoir and the surrounding material. This, in turn, changes stresses in the reservoir and
alters pore pressure as a results of deformation-related changes in the volume of pore space. The
objective of this section is to determine a relationship between the reservoir pressure change and
the vertical reservoir deformation, accounting for interaction between the reservoir and the sur-
rounding material. Once the link between fh/{t in (8) and pressure rate is established the flow

equation (8) will be solved for a single injection/production well.

The problem of reservoir interaction with overburden will be solved assuming ideally elastic and
isotropic overburden. The basis of the solution is the compatibility between deformations of the
reservoir and of the surrounding material. From amathematical point of view the reservoir will be

considered as an infinitely thin deformable plane.

With the above assumptions the deformation filed in the overburden is continuous everywhere
outside of the reservoir and is discontinuous across the reservoir plane. The situation is conceptu-

aly illustrated in Figure 1. The discontinuity in deformations across the reservoir develops
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Figure 1: Representation of reservoir Figure 2: Total stress change due to pore
and definition of parameters. pressure change in acircular
reservoir

because the top of the reservoir moves down while the bottom moves up. Despite the discontinu-

ity of deformations Dh=Dh* —Dh-, vertical stress change Ds, is continuous.
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To relate Ch and Ds,, it is necessary to solve a problem of determining stress and deformation
fields treating the displacement discontinuity as prescribed. This problem affords an analytical
solution in the case when stress and deformation fields are axially-symmetric. Following Sned-
don, 1951, equations of the theory of elasticity can be satisfied in an axialy-symmetric case by
introducing a potential F (r, z) such that al stress and displacement components are expressed
interms of F(r,z) derivatives. Stresses and displacements relevant to the current problem are
expressed as follows:

2-2n,. 1 2-n,. 1

°N2F — F,.,s,=E °N2F ,-E F
o 1-2n, %" %  °1+n, % °2(1+ny)(1-2n, **

u. =

= 11
Z 1-2n (11)

(o]

where E,n, are Young's modulus and Poisson’ s ratio of the overburden. The potential F (z,r) -

must satisfy the biharmonic equation and the latter is solved using zero-order Hankel transform:

G(z x) = (‘Z‘F(z,r)Jo(rx)rdr , F(zr) = (*;‘G(z, X)Jo(Xr)xdx

where G(z, x) isthe Hankel imageof F(zr) .

The biharmonic equation for F (z, r) can be solved by applying Hankel transform with respect r

to obtain an ordinary differential equation:

o’ 2('52 —
é&z_x pe G(z,x) =0

Its solution is elementary and is as follows:

G(z, x) = (A+B2z)exp(zx) + (C+ Dz)exp(-zx) ,

where A, B, C, D are integration constants that can be chosen to satisfy a number of boundary

conditions.

In this paper the reservoir is considered to be deep and it is not necessary to satisfy boundary con-
dition on the free surface. Then, z = 0 can be taken as the reservoir plane, asin Figure 1. Since
the influence of ground surface is neglected, the solution must be symmetrical around the reser-
voir plane and the solution for z>0 can be considered only. Further, constants A, B must be

zero, otherwise the solution will tend to infinity for large z. Also, since the reservoir plane is the
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plane of symmetry, shear stress at that plane must be zero. This leads to the relationship between
the remaining constants: XxC = 2n,D, Sneddon, 1951. Finally, the solution can be given as fol-

lows:

G(z x) = [;)(Zn0 + zx)exp(—2zx)

Substitution of the above solution into (11) gives the following expressions for stress and dis-

placement in terms of unknown D(X) :

2-2n
x3D(x)Jg(rx)dx , Dh* = OafoD(x)Jo(rx)dx

b E
Sv T 1-2n,

0o ¥
VT T+ ng)(1-2ny)Q

Using notations Ds (x) and Dh(x) for Hankel transforms of vertical stress and reservoir defor-

mation, the above relationships give:

— EO
Ds,(x) = meh(x) (12)

Notethat Dh aboveisthe full deformation across the whole reservoir, not Ch* . This accounts for

the coefficient 4.

The final step in reservoir-overburden analysis is to determine a link between pore pressure
changes Cp(r) and reservoir deformation Dh(r) . If Hankel transform is applied to (10), there

will be the following linear relationship that involves the Hankel image of pore pressure:

DA(x) _ 1. 1+n,
— = écrrnr[st(x)—(l—a)Dp(x)] (13)

If Dhiseliminated from (12) and (13), the following set of expressions can be obtained:

1

_ cX : _
Ds,(Xx) = (1—a)1+CXDp(X) , Ds'y(x) = (1—a)1+CXDp(X) (14)
1 N
%(X) - géécrlt_:\]rg(l_a)l +1chp(X) 19
where:
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C.l1+nl1-2
¢ =~ N2 Moh (16)

Qualitative Features of Stress Redistribution

At this stage it is instructive to discuss solutions (15-16) in qualitative terms as well to give an

example of using deceivingly simple relationships that involve Hankel images.

Most important features of the solution for stress change in overburden are controlled by a single
constant, ¢, defined by (16). This constant has a dimensionality of length and is of the order of
reservoir thickness when stiffness properties of the reservoir and overburden are similar. In subse-
guent applications ¢ will enter various formulae in non-dimensional combinations of the type
c t| where | represents a characteristic dimension like awell or areservoir radius, depending on

the problem considered.

When the reservoir material is very stiff in relation to overburden or when its thicknessis small in
relation to the other characteristic dimension of the problem, c tl » 0, no stress redistribution

OCCuUrs.

On the other hand, when the overburden is very stiff in relation to reservoir, or the reservoir thick-
nessislarge in comparison to adimension like well radius, the overburden could constrain reser-
voir deformations to the point that there is no effective stress change in the reservoir. In this case
of ctI»1, Ds,, = (1-a)Dp, i.e. stresses induced in the overburden are directly controlled by

local pore pressure change.

To understand the results in more quantitative form, consider an example of a pressure-depleted
reservoir of thickness h and approximately represented by a circular area of radius R, . Assume
that the pressure drawdown is uniform across the reservoir and equal Cp for r <R, and zero out-
side of this area. For this pressure distribution the Hankel transform can be easily calculated:

Dp(x) = DpR.J;(Rx)/x . Applying inverse Hankel transform to Ds,(x) determined based

on (15) gives the following expression for the total vertical stress change:
Ds,(r) v Jo(rx)J;(cx) »

Dp(l-a) _ 1=0 —17¢x
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Figure 2 details vertical stress changes computed according to the above equation. The set of
curvesis for values of ¢ @R, = c¢, chosen is such that the corresponding stressvaluesat r = 0
are evenly spaced. Vertical stress change at the center of the disk where pore pressure can be
approximated as Ds,(0)/Cp(1-a) = c,/(0.878+c,) with three significant figures accuracy.
Practical aspects of this solution will be discussed further.

In order to understand the physical meaning of solutions (15-16) it is instructive to convert rela-
tionships between Hankel transform into rel ationships between the characteristics of actual inter-
est. If Hankel transform is applied to both parts of, say, equation (16) and Dp(x) isexpressed as

atransform of Dp(r) , the following expression can be recovered:

1+n.x
Dhrfr) . g%crli::g(l—a)(Dp(r)—é‘K(r,r')Dp(r')r'dr') (17)
K(r, 19 = § 1i)éXxJo(rx)JO(rdx)dx (18)

The above relationship suggests that deformation at a point in the reservoir is related not only to
pressure change at that particular point but is an integral effect of pressure changes in the rest of
the reservoir. This*“communication through overburden” depends on its stiffnessin relation to the
stiffness of the reservoir. When the parameter ¢ is zero, i.e. soft overburden, the conventional
assumption of constant vertical stressin the reservoir isrecovered from (18). In any realistic case,
however, vertical stress is altered by pore pressure changes. The analytical form of (18) is such
that the reservoir compression is always smaller when the stiffness of the overburden is accounted
for (c >0).

Thekernel K(r, r¢) of theintegral expression (18) describes the influence of pressure changes at
location r ¢ on deformation at r .At r = r( the kernel is singular and its direct utilization is diffi-

cult. These difficulties are avoided through the use of Hankel transform.

Flow problem

For a single phase flow with constant permeability the mass flux according to d’ Arcy law can be
takenas q = —r (kxm){p = 1r , where k is the absolute permeability and rr isthe fluid viscosity.
Substituting this expression into (1) and making use of (17)

10
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1M ks _ [‘IT_IO_ ¥ A TP(r) . }
FFg?r_nWﬂ rfc Tt by K(r,r) T rdr| (19)
where:
&(1_61)21—ur
Ch .. C, ,1-u, f 3+ 3n,
¢ =Gt (-a-))rll-a)gmmn o D =—F c i 0
r _M1—a —j _(1-2a)2 r
cf+f(1 a j)+f(1 a)3+3n

r

The coefficient ¢ in (20-21) isthe combined compressibility of the fluid-reservoir system. It con-
sists of three terms, the first one being the compressibility of the fluid, the second term is con-
trolled by the compressibility of the solid rock matrix. This term describes the change in volume
of the pore space due change in the volume of solid matrix resulting from variation in fluid pres-
sure. The last term in ¢ describes the change in the volume of pore space due to bulk reservoir
compression caused by changes in effective stress and assuming that vertical stress does not
change. In essence, ¢ isthe compressibility of the system when compaction drive is fully active,

i.e. isnot inhibited by the stiffness of the overburden.

The integra in the left-hand side of (19) describes inhibition of compaction due to vertical stress
redistribution in the reservoir. When the parameters ¢ is large, corresponding to very stiff over-
burden in relation to the reservoir, the kernel K(r, r¢) becomes d-function and the entire integral
is fp(r)«qt so that the conventional well equation is recovered with the compressibility

c(1-Db) i.e lacking the component related to reservoir compaction.

Solution of Integro-Differential Equation

The governing equation of flow is solvable in closed form when permeability and density gradi-
ents are neglected. In this case the factor r k «1r is constant and application of Hankel transform to

(20) givesthe following ordinary differential equation for the Hankel image of pressure:

2 _ nfcg _, cx odp(x t)
X% ) qu b1+cxg dt 21)

A family of solutions of (21) can be written as follows:

11
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CX 1= kt

p(x, T) = Aexp® F(T)O F(X) = 1-b A (22)

where A isan arbitrary constant that can also depend on x.

An immediate interpretation of this analytical solution is difficult. When effects related to over-
burden-reservoir interaction are not present (e. g. when b or c are zero), the above solution,

transformed into physical space becomes asfollows:

r2.

p(r,T) = =y Aexp(—sz)xJO(rx)dx = A2_|_expe 4T8 (23)

Since integration of the above pressure over an infinite reservoir gives a time-independent con-
stant, this solution corresponds to injection of afixed massof fluidat T = 0 into areservoir with
initially zero pressure. Assuming for the time being that he same interpretation holds true for the
general case of (23), the solution corresponding to constant flow rate can be obtained by taking a
function p(x, T—t) corresponding to injection / extraction a& T = t and integrating it with
respect to t treating A as a constant. The fact that this procedure results in the solution corre-
sponding to the constant rate of injection will be demonstrated directly after the solution is
obtained. In aformal sensethis procedureislegitimate since p(x, T—t) isaso asolution for an
arbitrary t . The same holds true for any integral with respect to t . Integration with respect to t

givesthe following solution:

CX 06Cq _ X°T =
Qp(xT t)dt _A(x)x2e b1+cxg§1 expgT; (24)

T+cx®
The solution in physical space is obtained by applying Hankel transform to the pressure image
(24) and selecting the constant A(x) appropriately. The final result for pressure change in reser-

voir of thickness h dueto flow rate q at the well isasfollows:

Dp(r, T) = 2pkh§fa?L —&X pgeTF)(( )%‘] (rx) L F = 1_bli)éxg (25)

The unknown A(x) was chosen to be proportional to F~1(x) . Therational is the following. The

final solution must be identical to the conventional line well solution in two limiting cases.

12
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c = 0 and c = ¥. Inthelast case the solution must correspond to compressibility c(1-b) .
With the mentioned choice of A(x) both criteriaare satisfied. In the first limiting case F(x) in
(25) is unity and the entire integral is the Hankel transform representation of the conventional

solution since:

2
¥ (1 T2 dx _ l-.eel &
Q(l exp(—Tx ))Jo(rx)7 éElé o

where E;(-x) isthe exponential integral in terms of which the conventional solution is detailed.
When c® ¥, F(X)® (1-b) and the time-related term in (25) becomes Tx(1-b), or

kt enf c(1-Db) , i.e it indeed corresponds to a conventional well solution with the compressibil-
ity c(1-b) .

Apart from this two limiting cases, the solution (25) is such that

limr(Dptqr) = —gn2pkh
reo

for al valuesof T, i.e. it corresponds to constant flow rate into thewell at r = 0.

Qualitative features of the solution

The solution (25) can be best interpreted when pressure changes are detailed in terms of non-
dimensional independent variables, T,, = Ttr2 and R, = rtr,,, where r ,is the well radius
introduced into the solution artificially since the base solution (26) correspondsto alinewell. The
introduction of r,, inthisway preserves the form of the solution if parametersinvolvedin (25) are

replaced asfollows:

Cl+nl-2n
K ce c, = Co, = _r_r_zol
Col-n, 1-n24r,

r&@ R, =rer,, T® T, = ToarZ = o
w

In the subsequent exposition the parameter ¢, will be referred to asthe relative stiffness of reser-
voir-overburden system. Very soft overburden in relation to reservoir when no stress redistribu-
tion take place correspondsto c,, = 0 and the opposite case c,, = ¥ correspondsto avery stiff

overburden When compressibilities of reservoir and overburden are the same and Poisson’ s ratios

13
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Figure 3: Pressure change versus time for different compressibility ratios

n, = n, = 025,c, = 2ht9r, .Typica practical values of relative stiffnessin thiscase are 5 to

r
10, although much larger values are not uncommon.

Another parameter in (25), b, defined by (20) effectively characterizes compressibility of the res-
ervoir rock matrix in relation to bulk compressibility of the reservoir-fluid system. When the fluid
compressibility islow in relation to reservoir matrix compressibility, b » 1 and stress redistribu-
tion effects are the most pronounced. When fluid compressibility dominates the system, due to

gas evolution for example, b » 0 and effects related to stress redistribution are negligeable.

Figure 3 illustrates flow pressure change (at the well) as a function of non-dimensional time. The
case b = 0 corresponds to the conventional solution whilein the limiting case b = 1 properties
of the solution are entirely determined by stress redistribution effects. In all cases, however, pres-

sure at the well drops faster compared to the conventional solution, as Figure 3 illustrates.

The reason for faster pressure drop compared to the conventional solution is related to vertical
stress reduction that inhibits compaction (compared to the case when no stress redistribution take
place). Figure 4 illustrates flow-induced vertical stress changes around the well at different times

while Figure 5 depicts corresponding changesin fluid pressure.

14
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The vertical stress reduction (Figure 4) in the vicinity of the well is always compensated by stress
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Figure 4: Vertical stresschangesaround  Figure 5: Fluid pressure changes around
the well at different times. the well at different times.

increase elsewhere. However, the magnitude of stressincrease is small since the load transferred
from some area around the well is distributed over an infinite exterior of thisarea. Important qual-
itative effects related to stress redistribution are noticeable at early times when the area affected
by pressure change is small and stress redistribution is reasonably localized. Figure 6 illustrates

fluid pressure changesnear awell at T = 0.1.

An interesting feature of pressure distributions detailed in Figure 6 is the presence a peak at some
distance from the well. This peak is related to vertical stress increase as a result of load transfer
from the near wellbore area. The insert in Figure 6 illustrates pressure changes at some distance
from thewell. It isquite clear that theinitial increase in pressureisrelated to load transfer to areas
not yet affected by flow. Fluid pressure start decreasing at some time when the flow front reaches

the point of peak pressure.

The magnitude of pressure increase due to load transfer is not large since the load transferred

from the area affected by flow is distributed over an infinite exterior of this area. Nevertheless,

15
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Figure 6: Normalized pressure change versus distance from the wellbore at early time
for different relative stuffiness. Insert: Early time history of pressure change
a apoint.
since the entire load must be preserved, the accumulated effect of redistributed loads should be

considerable.

Practical Implications - Single Well

Examination of the pattern of pressure changes around the wellbore (Figure 6) suggests that
effects associated with flow-induced stress redistribution lead to sharper pressure gradients com-
pared to the standard solution. Considering that only an immediate vicinity of the wellbore is

affected, at least at early times, the phenomenon can be perceived as a skin effect. In order to

16
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appreciate the magnitude of this type of skin effect it is convenient to express the difference

between the classical an the present solutions in terms of an equivalent skin factor. Defining the

1.4 1 ] ] T
b
_ 1.2 F § -
2 @ 0.9
Q LL
S 10 F £ ]
c n
=~ c
0 3
~ 08 | & 0.8 -
g 2
% %.1 1 10 100 1000
< 0.6 Non-Dimensional Time T,, 0.7 1
=
= 0.6
£ 04 ]
& 0.5
= 0.4
0.2 03
0.2
0.1
0 ]
0.1 1 10 100 1000 10000

Reservoir - Overburden Relative Stiffness CW

Figure 7: Maximum apparent skin factor versus reservoir-overburden relative stiffness.
Insert: apparent skin factor versus time for different compressibility ratios.

skin factor s according to van Everdingen as Dpg,;, = s(gmt2pkh) and representing Dp
according to (26) in terms of the classical solution corrected for skin effects, the skin factor can be

determined from the following equation:

frer2. .
- M T wWH_
Dp = 5 rhestie Akt o

The apparent skin factor determined in such away is afunction of timeillustrated in the insert of
Figure 7 where a set of curves for different b are shown At large times when effects of stress
redistribution become insignificant, the skin factor tends to zero. Figure 7 illustrates the maxi-
mum apparent skin factor as a function of relative reservoir-overburden stiffness plotted for dif-

ferent values of relative compressibility. The range of skin factor values resulting from effects of
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stress redistribution suggests that this phenomenon in many cases can be perceived as an apparent

well damage. The reduction in flow efficiency is neither dramatic nor negligeable.

The additional pressure reduction at the well is adirect consequence of inhibited compaction due
to formation stiffness. The entire system behaves as if the compressibility of the rock matrix is
lower compared to what is expected on the basis of a conventional analysis with full compress-
ibility being active. For this reason the effects of inhibited compaction drive can be evaluated in
terms of the compressibility reduction factor that can be applied to combined fluid-rock com-
pressibility ¢ defined by (20). The compressibility reduction factors F_ illustrated in Figure 8 are
back-calculated in such away as to match the conventional solution detailed for compressibility
cC = cF. withthe new solution (25). The equivalent compressibility ¢' determined in such away
is not a constant but a function of time. However, ¢’ remains reasonably constant at early times
and this type of interpretation of the new solution is legitimate, especially for cases of very com-

pressible reservoirswhen b » 1.
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The fact that the compressibility factor in Figure 8 detailed for b = 0.5 isaso 0.5 at early times
effectively means that the compaction is completely inhibited, at least for relative compressibili-
ties in excess of 200 and for non-dimensional flow times up to 100. This, perhaps, explains the
reason why compaction was not observed in extended production tests at the Ekofisk North Sea

reservoir. Asaresult of this early observation the possibility of compaction and the sea floor sub-
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sidence was dismissed |leading to multimillion remedial measures when the production platform
subsided some 10 ft., Sulak, 1991.

Practical Implications - Reservoir Scale

The developed solution is applicable only for flow into a single well in an infinite reservoir. In
this case vertical stress is redistributed in such a way that the load never escapes the region
beyond boundaries of the reservoir. For afinite reservoir, on the other hand, vertical stress reduc-
tion can affect the entire flow region. On areservoir scale the degree of unloading will be strongly
dependent on the ratio of the reservoir lateral dimension to its depth below ground surface. For
shallow reservoirs of significant lateral extent the effect of unloading is expected to be neglige-

able. For deep reservoirs the unloading effect is estimated below.

Consider a circular reservoir of radius R, where the fluid pressure uniformly dropped by Dp.
Vertical stress changes as a result of pressure depletion were aready examined, Figure 2. The

degree of unloading in this case is controlled by arelative stiffness c defined as follows:
. = C/1l+n1l-2n, p
R Eol_nr 1—”5 mr

Changes in effective stress (leading to compaction) are strongly related to ¢ and illustrated in
Figure 10.
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Considering that changes in the effective stress in the reservoir region are lower compared to the
case when load transfer does not take place, the overall reservoir compaction is also lower. This
affects the amount of oil recovered as a result of the compaction drive. Figure 11 illustrates the
compressibility reduction factor appropriate for assessment of effective compressibility when
stress redistribution takes place. This assessment suggests that estimates of compaction-related
hydrocarbon recovery can be substantially in error if the load transfer away from the reservoir

region is not accounted for.

Conclusions

The phenomenon of flow-related stress changes around a well was investigated by deriving and
solving a modified diffusivity equation in which the storage term related to reservoir compaction
is determined by changes in vertical stress resulting from interaction between reservoir and over-
burden. A link between the reservoir pressure changes and changes in vertical stress is obtained
by solving the theory of elasticity problem for stresses and displacements in material surrounding
the reservoir and assuming continuity of displacements at the interface between the reservoir and
the host material.

The equation governing radial flow into aline well isan integro-differential equation in which the
term related to reservoir compaction represents an integral effect of pressure changes everywhere
in the reservoir. An analytical solution of the coupled stress - flow problem became possible
because both stress interaction and flow problems are solvable using the same mathematical tech-

nique based on Hankel transform of governing equations.

Detailed examination of the solution suggests that effects related to stress redistribution are far
from negligible, especially when the compressibility of the reservoir matrix exceeds that of a
fluid. When pressure in the reservoir drops and the reservoir material tends to compact, tensile
deformations are induced in the overburden that reacts to reduce the reservoir compaction. The
effectiveness of this reaction to prevent reservoir deformation is dependent of the relative stiff-
ness of the reservoir in relation to stiffness of the overburden. When overburden is “soft” relative

to reservoir, the constraining effect is negligeable.
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The mechanism of stress-flow interaction is such that changes in pressure distribution are the
most pronounced in the vicinity of the well. The reservoir - overburden stress interaction leads to
sharper pressures gradients near the well and more rapid initial pressure decline compared to the
standard case. If well test data are interpreted in conventional terms, effects associated with stress
redistribution will be perceived as a skin effect and accounted for within the standard interpreta-
tion scheme by a skin factor. Estimates based on the obtained solution indicate that stress redistri-

bution effects in most cases would amount to skin of up to +1 and possibly higher.

An aternative way of assessing the constraining effect of overburden isin terms of an equivalent
compressibility that can be used within the standard well test interpretation scheme. Estimates
presented in the paper have shown that compressibility reduction factors that account for reser-
voir-overburden interaction are strongly dependent on reservoir compressibility in relation to
fluid compressibility aswell as on the relative stiffness of overburden in relation to reservoir stiff-
ness. When bulk moduli of reservoir and overburden are the same, the reservoir - overburden
interaction leads to almost complete inhibition of compaction drive at early flow times. Eventu-
aly, the benefits of the compaction drive are fully restored. This result suggests that in cases
where reservoir compaction is asignificant factor, conventional reservoir simulation schemes will

give adistorted view of an early economics of the project.

Assessment of the effects of stress redistribution at a reservoir scale suggests a potential for con-
siderable errors in estimates of recoverable reserves if the described effects are not properly
accounted for. Specific estimates require information on reservoir size in relation to depth below
ground surface, terminal drawdown and material stuffiness. The present solution has been
obtained for reservoirs at infinite depth and the compressibility reduction factor in Figure 11 is

only appropriate for deep reservoirs of limited extent.
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