Company Profile

Terralog Technologies Inc.™ (TTI™) is an international environmental services company headquartered in Calgary, Canada.

TTI specializes in Petroleum Geomechanics and deep well disposal waste management using the Slurry Fracture Injection™ (SFI) technology.

SFI™ is an environmentally sustainable technology used to place petroleum exploration and production (E & P) waste, Biosolids & contaminated soils in the deep subsurface (geo-sequestration).

SFI is a permanent Zero Discharge disposal solution.

Terralog’s Services are built on our extensive experience in deep well disposal of E&P waste streams; combined with expertise in geomechanics, geology, rock mechanics, reservoir engineering, and environmental management with practical field experience in long-term deep well injection operations.

In Indonesia, PT Terralog Teknologi Indonesia uses the SFI process to operate one of the largest deep well disposal projects for E & P waste streams in the world. The SFI project is located at the Duri oilfield in the Riau province of Sumatra, Indonesia.

In the eight years since the Duri SFI project began in December 2002, over 912,000 cubic meters (5.7 million barrels) of oily viscous fluid waste (oily sludge) has been injected back into deep geological formations, essentially returning the waste stream to its place of origin.

The SFI process is being successfully used by clients/operators around the world. TTI is active in Canada, USA, Norway, Indonesia and Saudi Arabia.

SFI Disposal of Waste Streams

Slurry Fracture Injection is an ideal solution for permanent zero discharge disposal of multiple waste streams:

Petroleum Industry
- Disposal of E&P wastes
- Drilling wastes
- Oilfield produced solids
- Oily viscous fluids/sludge
- Tanks bottoms
- Contaminated soils
- NORM

Municipalities
- Wastewater treatment sludge (i.e. Biosolids)
- Sulfur, fly ash, incinerator residue
- Industrial effluent, sludge
- CO2 sequestration
- Other waste streams.

Zero Discharge E&P Operations

Terralog helps our clients achieve Zero Discharge E&P operations. Slurry Fracture Injection has a proven environmental record of Zero Discharge waste disposal with no impact on the biosphere.

- Permanent ‘Zero Discharge’ Disposal
- Protects underground sources of drinking water, soil and air quality
- No surface and groundwater contamination.
- No impact on future land use
- Safeguards human health by reducing pollution

Terralog SFI Service Page 1 of 2 April 2017
Deep Well Disposal Processes

Slurry Fracture Injection (SFI)
- high pressure injection and rates (fracturing)
- large waste volumes (up to 17,000 m³/month)
- continuous injection cycles
- multiple waste streams
- dedicated disposal wells

Cuttings Re-Injection (CRI)
- moderate/low injection pressure and rates
- smaller waste volumes (<100 m³ batches)
- drilling wastes from drilling a well (cuttings)
- rig/platform based operations

Water Injection/Disposal
- low injection pressure, high rates
- large waste-water volume (1000’s m³ produced water)
- dedicated disposal wells

Typical Disposal Depths:
350 – 2,000 meters

Slurry Fracture Injection

The SFI Process
- Waste material is delivered by truck to the SFI site on a continuous basis. The waste is screened, and then mixed with produced water to create slurry. Other waste streams can be granulated, and then mixed with water.
- SFI technology can effectively dispose of materials with grain sizes up to 5 mm. The slurry is made with the highest possible solid material concentration – from 10 to 30 percent by volume.
- The slurry is pumped down a waste disposal well at in-situ fracturing pressures. It is important to determine the proper slurry concentrations, injection rates and volumes sustainable by the target geological structure.
- Target structures are usually thick permeable, confined and unconsolidated geological formations. In these types of formations the high in situ compressive stresses and the high pressure bleed off capacity of the target formation ensures that the waste is permanently immobilized in the formation.
- Process Control: Extensive monitoring/data analyses/engineering occurs during SFI operations, to map the waste pod and assess fracture containment, storage capacity and wellbore integrity.